If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+11=0
a = -4.9; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-4.9)·11
Δ = 215.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{215.6}}{2*-4.9}=\frac{0-\sqrt{215.6}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{215.6}}{2*-4.9}=\frac{0+\sqrt{215.6}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 35+5m=50+m | | 54+6r=6(r+9) | | 5(x-18)=3× | | 8=7−|x| | | -6+5(1+5x)=99 | | 15-1/6n=1/6n | | x–5.4=3.6 | | 7x^2+2=x | | y+3×=1 | | -4.9t^2=11=0 | | 8(1-6x)-6=98 | | 2^7x=6 | | 6-3r=-6+r | | 67-x=281 | | 12-7x=x-4 | | 25+.45b=40+.25 | | 18-2n=14;2 | | 7p-4p=-24 | | 50+0.05m=35+0.01m | | 2x-2+6=-17-7 | | 3/7p=9 | | 48=-8(10s-6)+80s | | 7k–5=–19 | | 3x+8=6+5x | | w/7+13w=34-w | | -(-4x+4)=-x-14 | | 4w/20-7=17 | | -6=6+4w | | 18-3v=30 | | U^2+u+4=0 | | x(x-7)+6=0 | | -6+x=(x/3)-4 |